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A resolution of the SU(3) outer multiplicity problem and 
computation of Wigner coefficients for SU(3) 

R Le Blanc and D J Rowe 
Department of Physics, University of Toronto, Toronto, Ontario, Canada M5S 1A7 

Received 10 December 1985 

Abstract. A simple algorithm is given for the resolution of the SU(3) multiplicity problem 
and the computation of SU(3) Wigner coefficients using a complete set of % ( 2 ) 0 U ( 3 )  
Bargmann tensors classified by operator patterns. Null space properties of these tensors 
are easily derived. Their structure is such that a direct one-to-one correspondence is shown 
to exist between the Bargmann tensors and the terms in the Clebsch-Gordan series for 
SU(3) as derived by O’Reilly. Finally, the resolution presented herein is shown to be 
concordant with an alternative resolution advocated long ago by Hecht. 

1. Introduction 

The computation of Wigner and Racah coefficients for the S U ( n )  groups is known to 
be fraught with difficulties for n > 2 ,  which arise because the reduction of the Kronecker 
product of two irreducible representations of the group is generally not multiplicity 
free. This problem is usually referred to as the outer multiplicity problem. As a result, 
there is a degree of arbitrariness in the resolution of the orthogonality of the couplings. 
In physics parlance, one would say that there are missing labels which could un- 
ambigously identify individual members of a complete set of orthogonal coupled states. 
SU( n )  invariant operators belonging to the su( n )  enveloping Lie algebras have been 
proposed to supply the supplementary labels (see, e.g., Moshinsky 1963) but, beside 
being arbitrary to some extent, they are usually tensors of higher degree in the Lie 
algebras and therefore rather cumbersome to use. 

It was realised by Biedenharn, Louck and collaborators (see the review article by 
Louck (1970)) that a clever use of the powerful Wigner-Eckart theorem could assist 
in the resolution of the S U ( n )  outer multiplicity problem. One has only to introduce 
a basic set of SU( n )  tensors classified with the help of properties intrinsically related 
to the weight structure of the su(n) Lie algebras and their representations in order to 
supply the missing labels. Such a labelling scheme would be referred to as an intrinsic 
or canonical labelling. For the S U ( n )  groups, such a canonical labelling scheme is 
provided by the dual use of the Gel’fand basis labelling scheme by nested U (  i )  3 U (  i - 1) 
partitions. The corresponding pair of patterns are referred to as lower and upper 
(operator) patterns. The lower pattern enumerates the components of an irreducible 
tensor while the operator pattern describes in a compact fashion the structural properties 
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2914 R Le Blanc and D J Rowe 

of the tensor (shift properties, null space properties, etc) and consequently the formal 
structure of the corresponding Wigner coefficients. 

In view of the success of the analysis of Biedenharn and collaborators in uncovering 
the formal structure of the SU( n )  Wigner-Racah calculus in an illuminating way, one 
is encouraged to attempt an explicit realisation of their tensor operators. Such a 
concrete realisation would greatly facilitate the computation of Wigner and Racah 
coefficients for SU(n)  (and more specifically of SU(3)) which are important in, for 
example, high energy and nuclear physics. 

We partially unveiled such a practical framework in a recent paper on the structure 
of Bargmann tensors (Le Blanc and Rowe 1986). It was shown there that the use of 
an extended complementarity principle allowed the construction and classification by 
oU(2)@U(3) operator patterns of a set of basic tensors defined in and acting on a 
Hilbert space of oU(2) @ U(3) Bargmann polynomials labelled by Young diagrams of 
at most two rows. It was shown there that the operator pattern acquires a group 
theoretical meaning since it refers to the tensorial properties of the U(3) tensors under 
trans’formations by the complementary Q(2) group. We thus offered a partial but 
concrete resolution of the SU(3) outer multiplicity problem which has the interesting 
feature of providing a set of missing labels to the Wigner operators while retaining all 
the essential features of the Biedenharn et a1 analysis. We illustrated the effectiveness 
of our approach by giving analytical expressions for the isoscalar coefficients needed 
to perform the multiplicity-free coupling by [AO] and [Op] SU(3) tensors (Le Blanc 
and Rowe 1986). 

The purpose of this paper is to illustrate how the corresponding [ A O ]  and [Op] 
Bargmann tensors can be used to build a complete set of [Ap] SU(3) tensors belonging 
to a given multiplicity set and how one can use them to give a concrete and unequivocal 
resolution to the SU(3) outer multiplicity. Towards this end, we will show that the 
tensors belonging to a given multiplicity set can be unambiguously put into one-to-one 
correspondence with each term in the Clebsch-Gordan series for SU(3) as derived by 
O’Reilly (1982) and how this correspondence allows easy identification of their corre- 
sponding null spaces. 

An explicit algorithm for the calculation of the SU(3) =I SU(2) x U ( l )  Wigner 
coefficients in a Gel’fand basis is then fully expounded in 9 6. The algorithm is based 
on an ordered Gramm-Schmidt process. It is simple enough to allow algebraic 
expressions to be obtained for low multiplicity cases and computer calculations in 
general. We note that the computation of matrix elements of the basic Bargmann 
tensors does not rely on a recursive process and is therefore very efficient. An example 
is given in 9 7. Computation of SU(3) =I SO(3) Wigner coefficients is also briefly 
discussed. 

It will be shown (at least for the important case of self-eonjugate tensors) that the 
ordering given complies with a resolution of the outer multiplicity problem advocated 
long ago by Hecht (1965). According to Hecht a desirable resolution would be one 
having the property that the matrix formed by a restricted set of SU(3) Wigner 
coefficients, defining uniquely the more general coupling coefficients, naturally assumes 
a lower triangular form. We show that, for the self-conjugate tensors, the Wigner 
coefficients obtained with our ordering reproduce this property and we conjecture that 
this result is true in general. However, we find that our ordered tensors have null 
space inclusion properties different from those of Biedenharn’s abstract set. A com- 
parison is made in 9 8. 
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2. Overview 

A first step towards the resolution of the multiplicity problem for SU(3) is the derivation 
of a closed formula for its Clebsch-Gordan series: 

where ~A,p11[A2p21, [A31131 (simply denoted I in the following) is the multiplicity of the 
unirrep [A3p3]  in the Kronecker product of the unirreps [ A l p , ]  and [ A 2 p 2 ] .  It is usually 
called the Littlewood-Richardson or intertwining number. O'Reilly (1982) recently 
derived such a formula: 

m l n o 1 2 , A , + ~ l )  m i n i l r , J 2 , A 1 + w l - k )  c 
J =o 

[ A l P l l @ r ~ 2 ~ 2 l =  c 
k=O 

min ( A -1 + k, A I ) 

x [ A l + A z - j - 2 i + k , ~ l + ~ z + i - j - 2 k ]  (2.2) 
I =maxiO,j + k - + , )  

in terms of three nested summations. It will be shown herein that this formula contains 
a great deal of group theoretic information. 

In order to provide a canonical resolution to the multiplicity problem, Biedenharn, 
Louck and collaborators, in a series of articles (see Louck 1970, Biedenharn et a1 1972, 
Biedenharn and Louck 1972, Louck and Biedenharn 1973, Biedenharn et a1 1985 and 
references therein), developed an elegant formalism in which they postulate the 
existence of an abstract set of SU(3) tensor operators classified by upper Gel'fand 
patterns (commonly referred to as operator patterns). They showed that this set of 
tensors can be denoted by 

where 

is an operator pattern and the lower pattern 

labels a basis for the U(3) unirrep 

{ h }  = { h,h2h3} = { A  + p  + 6, p + 6,6} (2 .6)  
(also irreducible under SU( 3)) according to which this tensor operator transforms. 
The operator pattern characterises the structural and tensorial properties of 9, the 
most important being the following. 

(i) The shifts 
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indicate that, when applied to a state belonging to a U(3) unirrep {hihjh;}  belonging 
to the Hilbert space, the tensor Y will map this state to a new unirrep labelled by 

(2.8) 

(ii) The existence of 2 ( A )  tensors having the same shifts A and identified by the 

{ h ~ h ~ h ~ }  = { h :  + A , ,  h;+ A 2 ,  hi+ A&. 

condition 

rI2 + r22 = constant (2.9) 

in (2.7) indicates that a given unirrep {h”} may appear more than once in the resolution 
of the corresponding Kronecker product {h}O{h’} .  

(iii) Some couplings predicted by the shift rule { h “ } = { h ’ + A }  to arise when the 
tensor is applied to a given state must vanish identically since we have I6 2. 

(iv) The space N ( T ’ )  for which the application of an ordered set of tensors 

(2.10) 

results in its annihilation is called the null space of the tensor. An inclusion property 

N ( r l )  2 N(r2) 3 . .  . 3  N ( P )  (2.11) 

may be required to apply for such spaces. 

elements directly result in the definition of Wigner coefficients through the equality 
(v) The tensors are required to be (orthogonal) unit tensors such that their matrix 

( { h 3 } m / Y  { h 3 }  l { h l } w )  = ( {hl lml;  {h2}m2l{h31m3)~.  (2.12) i I21 
The identification of the multiplicity label with the operator patterns r then serves to 
emphasis that the Wigner coefficients thus defined inherit their structural properties 
from their parent tensors. 

In the following, we give an explicit construction of a set of basic tensors acting 
on a Hilbert space of %(2)OU(3) Bargmann polynomials. A tensor in the set will be 
denoted 

T ( Y ) [ A P I  v m  (2.13) 

where ( y )  and [Ap] indicate its %(2) and SU(3) ranks, and v and m label a %(2) and 
SU(3) basis for ( y )  and [Ap].  The tensors are constructed with the help of six Bargmann 
variables g, and their derivatives a/ag, and, as such, each tensor has a uniquely defined 
U(3) rank {h} .  Furthermore, it will be shown that the %(2) quantum numbers ( 7 )  
and v provide a new interpretation of Biedenham’s operator pattern and endow the 
latter with an explicit group theoretical meaning. 

It will be shown that the basic tensors (2.13) satisfy Biedenham’s conditions (i), 
(ii) and (iii) when their actions are restricted to a subspace (SU(3) model space) of 
the full Hilbert space. Furthermore, it will be shown that each term in the O’Reilly 
series (2.2) can be put in correspondence with a unique Bargmann tensor (2.13), a 
most gratifying result. 

However, our tensors do not satisfy Biedenham’s conditions (iv) and (v). As a 
consequence, equation (2.12) must be replaced (after appropriate reduction with respect 
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to the subgroup %(2), cf equation (6.2)) by the more general expression 

([A3p31m31 T(Y)[,":p211[A l ~ l l m l )  
I 

p'= 1 
= c ([ A I P l l m l ;  [ ~ Z C L 2 1 ~ 2 l [ ~ 3 P 3 1 ~ 3 > , ~ ( [ ~ 3 P 3 1 I 1  -JIy) [A21L2111[~lPl l )p~  (2.14) 

in terms of both Wigner coefficients and reduced matrix elements (extended Wigner- 
Eckart theorem). 

We will use a Gramm-Schmidt process to solve equation (2.14) for the Wigner 
coefficients. We therefore order the patterns y +  y ( p ) ,  p = 1, .  . . , 1 and impose 

( [ A ~ P ~ I  (I y ( p ) ) [ h 2 p 2 1  I( [A 1 ~ 1 1 ) ~ ~  = 0 if p' > p. (2.15) 

The Wigner-Eckart theorem then gives 

( [ A ~ c L ~ I ~ ~ I  ~ y ( p ) ) ~ ~ ' 2 1 1 [ ~ ~ ~ ~ I m ~ )  

= c ([A ,PI1 m1; [A2P2lmzl [A3P3l  m 3 ) p , ( [ A 3 ~ 3 1  I1 -JIy(p)) [A21L21 II [ A  , P I  
P ' S  P 

(2.16) 

The left-hand side of this equation can be evaluated explicitly. The reduced matrix 
element ([A3p3]1) ~ y ( p ) ) r A z " 2 1  Il[Alpl])p is shown to be a linear function of the Wigner 
coefficients ([Alpl]m,; [A2pZ]m21[A3p3]m3)p for the same p which can all be deduced 
from a single chosen coefficient (m2 = m,, m, and m3 highest weights) 

( [ A I P I I H W ;  [ A ~ P ~ I ~ o I [ A ~ P ~ I H W ) ~  

as shown in Q 6. The algorithm then allows the computation of the quantity 

([A IPIIHW; [A2P21 moI[A3P3IHW)2, 

from which all other coefficients can be obtained. The algorithm is simple enough to 
allow algebraic manipulations for low multiplicity cases as illustrated by an example 
in 0 7. 

For the Gramm-Schmidt process to be non-arbitrary, one must specify an 
unequivocal ordering of the tensors. Fortunately, the structure of our basic tensors is 
such that a unique ordering by null space inclusion properties can be given, as will 
be shown in 8 8. Although our ordering does not duplicate property (iv) of Biedenham's 
abstract set of tensors, it appears to reproduce an alternative resolution of the outer 
multiplicity problem first advocated by Hecht (1965). 

First, recall that Hecht (1965) did derive recursion relations (see also Draayer and 
Akiyama 1973) which allow the computation of the values of generic Wigner coefficients 

([A I P l 1  m,;  [ A Z C L Z I  m2KA3CL31 m3)p 

from a restricted set of Wigner coefficients of the form 

(2.17) 

or 

Now, it has been postulated (see, e.g., Braunschweig 1978) that the number of 
coefficients belonging to such restricted sets is equal to the intertwining number 1. 
Equation ( 2 . 1 8 ~ )  would therefore define a square matrix M,,. where the p index refers 
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to an ordered set of tensors and p ’  refers to an ordered set of allowed Gel’fand patterns 
ml(p’). We show that this is the case for the very important class of self-conjugate 
SU(3) tensors (Lohe et al 1977) and, furthermore, that the structure of the Bargmann 
tensors results in M being strictly lower triangular. Now Hecht (1965) argued that 
one can resolve the SU(3) multiplicity problem simply by requiring M to be lower 
triangular. It is most satisfying to see that (at least our self-conjugate) Bargmann 
tensors duplicate such a simple resolution which ‘does not suffer from the worst faults 
of an arbitrary labelling’ (Hecht 1965). Furthermore, with the identification of the 
multiplicity index p with the upper patterns, Hecht’s resolution becomes ipso facto 
equivalent to a canonical labelling. 

In the more general case of coupling by non-self-conjugate tensors, we conjecture 
that M is still a square lower triangular matrix and give a partial proof by showing 
that M has null entries in its upper triangular part. 

3. %?(2)0 U(3) Bargmann tensors 

Following our previous developments (Le Blanc and Rowe 1986), we consider a 
Hilbert-Bargmann space of polynomials in six complex variables ( s e i ,  LY = 1 ,2 ,  i = 

1,2 ,3) .  By complementarity (Biedenharn et a1 1967), this space decomposes into 
unirreps ( h l h 2 ) O { h l h 2 0 }  of the direct product group %!(2)0U(3). Furthermore, this 
decomposition is multiplicity free. Thus a basis of Bargmann polynomials can be 
labelled by upper Q(2)  and lower U(3) Gel’fand patterns: 

where the ranges of the parameters (i, m) are specified by the usual betweeness 
conditions. These polynomials are defined by their lowest weight ( i  = 0, m I 2  = mI1 = A + 
p, m22 = p )  components 

With the normalisation 

N[Ap]=( ( A + p + l ) ! p !  )”’ 

( 3 . 2 ~ )  

(3.26) 

this basis becomes orthonormal with respect to the Bargmann measure. In terms of 
the two Bargmann vectors, the u(3) Lie algebra is then given (with summation over 
repeated indices) by 

a c . . = g  .- 
agaj 

IJ ai 

while the Lie algebra of the complementary group %(2) is given by 

(3.3) 
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Note that, within the Bargmann space thus defined, each SU(3)  representation 
appears with a multiplicity equal to the dimension ( A  + 1) of the corresponding Y Q ( 2 )  
representation ( h / 2 )  (in the usual angular momentum notation). Thus the full 
Bargmann space is not a model space for SU(3)  (BernStein et a1 1975). But if a 
restriction is made to states that are lowest weight with respect to the complementary 
group % ( 2 ) ,  then such a model space is defined. 

To give a realisation of Biedenham’s set of tensor operators on this Bargmann 
space, it is first necessary to unambiguously select the appropriate upper patterns (Le 
Blanc and Rowe 1986). Note that the Bargmann polynomials have at most two rows 
in their corresponding Young tableaux and it is therefore neceessary to impose the 
condition A3 = 0 on the upper patterns (2 .4) .  This can be done by first considering the 
double Gel’fand pattern (2.3) where h, is set to zero: 

p - k  .) (3 .5a )  
h + p - j  

h + p - j - i  

P m22 (A+.  m12 m11 

and where the spans for ( i jk )  are given by (betweeness conditions) 

O S j S A  O C k S p  O G i C h - j + k .  (3 .56)  

This enumeration is strictly equivalent to Biedenharn’s enumeration. According to 
(2 .7) ,  the A3 shift associated with the pattern (3 .5)  is given by 

s = ( j + k ) .  (3 .6)  
By subtracting 6 across the whole pattern ( 3 . 5 a ) ,  

A + p - j - i - S  
(3 .7a )  -3 A + p - j - 8  p - k - S  

A + p - 8  P - 6  m12 - 6 m22 - 8 i m , ,  - 6 

with, as before, 

O S j S A  O c k s p  O S i S A  - j + k  (3 .7b)  

we obtain the appropriate pattern for which the associated A3 shift does indeed now 
vanish, as can be easily verified. The pattern (3 .7)  will unambiguously set the % ( 2 ) @  
U ( 3 )  tensorial properties of the Bargmann tensor operators built below. 

The use of the indices ( i j k )  in the enumeration (3 .76 )  is intentionally the same as 
those used in the O’Reilly series (2 .2)  for reasons that will become clearer in the 
following. We stress the fact that in our construction, the pattern (3 .7)  labels tensors 
that are irreducible under the group product Q ( 2 ) 0 U ( 3 ) .  The upper pattern 

I h + p  - 2 j - k  p - j - 2 k  \ (3 .8)  
A + p  - 2 j -  k -  i 

refers to the % ( 2 )  rank 

( , Y Z )  = ( A  + I-L - 2j - k, P - j - 2 k )  
and the % ( l )  weight 

v =  A + p  - 2 j -  k - i  

of the tensor while the lower pattern refers to its U ( 3 )  rank 

(3 .9a )  

(3 .9b )  
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and the corresponding Gel’fand basis. For this reason we denote the tensors of equation 
(2.3) by the more suggestive notation 

T ( Y , Y ~ )  U [ A @ ]  m .  (3.11) 
The Bargmann tensor (3.11) is defined by its %(2)0U(3)  lowest weight component 

v 2 )  \;&I = ( )\:I)& - k (  T,‘;O) \kOl)^ -I ( ~ / : - l )  \:I) k( T;; 1-11 ~ k O I ) /  (3.12) 

in terms of the four elementary %(2)0U(3)  tensor operators 

T;,l-l) [101 I W  (8) = (81 A &)I  TI, (10) Iw [lo1 ( g )  =g1, ( 3 . 1 3 ~ )  

and 

(0-1) Iw LO11 (g)  = a23  = a/ag23 w)i:l(g) = (81 A gd3. (3.13 b )  

When j =  k = 0 ,  the tensor (3.12) simply reduces to an unnormalised %(2)@U(3) 
Bargmann polynomial (3.1) whose double Gel’fand pattern is of the form (3.7) with 
6=0. 

The tensors (3.12) have been given a normal ordering in terms of creation and 
annihilation operators. It can be verified that only the components T(”)[o’l and 

not commute in (3.12) and that their commutator is given by 

(3.14) 

where C13 is now commuting with all the basic operators (3.13). In our previous paper 
(Le Blanc and Rowe 1986), it was argued that one should replace the product 

(3.15) 

in equation (3.12) with Cf3 in order to maintain consistency with the abstract sets of 
tensors used by Louck and Biedenham (1970) and Draayer and Akiyama (1973). 
However, we now find that we can make more progress and obtain a correspondence 
with the O’Reilly formula if we retain the normal ordered definition of equation (3.12). 
However, since the elementary Bargmann tensors Tl’~otp’\kol and T,(:-’)!F1 commute, the 
lowest weight components of equation (3.12) can also be expressed 

(3.16) 

Also recall that a tensor is uniquely defined by its lowest weight component. We thus 
consider the % ( 2 ) 0 U ( 3 )  tensors 

(3.17) 

T(-1-1)[101 do 

(11)[011 ~ ( - 1 - l ) r l O l  
LTIw Iw I Iw Iw I =  c l w =  c13 

e = min( 1-1. - k, j )  ( 1  I )  l o l l  (-1- 1 )  [lo] ( T , w  Iw x TI, Iw l e  

(11)[01] j~ k (O-l)[Ol] k (10)[10] A TrwYlY2)\$1=(TIw Iw ) - (TIw Iw ) (Tlw Iw ) - (T,‘,’-”~kol)’. 

T ( Y I Y ~ ) [ A c I I  = [ T ( P - C P - ~ ~ ) [ O P I  x T ( A - ~ / , - / ) [ A O I  ( Y I Y 2 ) [ A & 1  1 

( 3 . 1 8 ~ )  

4. Null spaces 

When a Bargmann tensor (3.17) acts on a Bargmann polynomial (3.1), not all poly- 
nomials enumerated in the O’Reilly series will be reached by the action of the tensor 
as some selection rules will intervene in addition to the usual rules arising from the 
additivity of the %(2) and U(3) weights. Due to its 9%(2) tensorial properties, the 
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tensor T ( Y ~ Y 2 ) [ h 2 w 2 1  will map states belonging to an SU(3) unirrep [Alpl] to (at most) 
a set of unirreps [A3p3]  such that 

1 J1 - J21S J3 C J1 + 52 (4 . la)  

with 

J ,  = A1/2 53 = A312 J2 = ( y1 - y2) /  2 = ( A 2  - j + k)/2. (4.1 b 

Also, from the additivity of the eigenvalues of the %(2) trace operator (also trace 
operator for U(3)) 

(e m m  = c.. I1 (4.2) 

we have 

A I  +2pI  + A 2 +  2p2 - 3 j  -3k = A 3  +2p3 .  (4.3) 

We obtain from (4.1) and (4.3) that the Bargmann tensor T ( y l y 2 ) [ A 2 f i 2 1  will map an 
SU(3) unirrep [Alpi] to (at most) the unirreps 

m i n ( A l , A 2 - j + k )  

T ( Y ~ Y ~ ) [ A ~ P ~ I .  . [Alp,]+ [ A ,  + A 2 - j +  k-2i, pl + p 2 -  j - 2 k +  i]. (4.4) 
i = O  

Let us now denote by Y ~ i y 2 1 [ A 2 f i 2 1  the restriction of the U(3) tensor T p l y 2 1 [ A 2 w 2 ’  to 
the model subspace of % (2) lowest weight Bargmann polynomials, i.e. the polynomials 
with i = 0 in equation (3.1).  On restriction to this subspace, we have from the additivity 
of the % ( 1 )  weights that 

A I  + pl + A 2 +  p2 -2j - i - k = A 3  + p 3 .  (4.5) 

(4.6) 

From (4.3) and (4.5), it is verified that equation (4.4) then reduces to 

Y [Alpi] + [ A l  + A 2  -j+ k -2i, pl + p2-j  - 2k+ i] y ( ~ , ~ ~ ) [ A ~ t r ~ l  : 

from which it follows that the tensor F p l Y 2 ) t A 2 w 2 1  has shift properties for A and p 
given by 

A3 = A I  + A 2  -j+ k -2i 

p3 = pl + p2- j  -2k+  i. 
(4.7) 

These are precisely the shifts predicted by Biedenharn if the upper (%(2)) pattern is 
interpreted as an operator pattern (see equations (2.7) and (3.8)). We thus conclude 
that the Bargmann tensors (3.12) have precisely the shifts assigned to them by their 
operator patterns when their actions are restricted to the model space. 

Equation (4.6) strongly suggests that each term in the O’Reilly series (2.2) can be 
related to a unique Bargmann tensor (3.17).  But the ranges of the parameters (ijk) 
appear to be different. This is because, when acting on a particular [ A , p , ]  polynomial, 
some of the Bargmann tensors (3.17) will return identically zero. The states that are 
annihilated by a particular tensor constitute what is called its nuN space. We now show 
that if i, j or k lie outside the ranges given by the O’Reilly formula, the initial [A,pl] 
polynomials are in the null space of the corresponding tensor. 

Since the null space properties of a Bargmann tensor (3.17) arise as much from its 
detailed structure as from its general tensorial properties, we will examine the actions 
of its constituent parts given by the general formula (4.4). The restrictions on the 
indices i, j and k will be dealt with afterwards. 
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( a )  Application of the rightmost term in (3.16) maps [Alpl] to 

( ~ ( - l - l ) [ l o l  r' : [Alpll+ [ A l ,  p1 -jl. (4.8) 

( b )  The application of the two following terms on [ A , ,  p ,  - j] leads to (usual %(2) 
product rule) 

( ~ ( O - l ) [ O l l ) k (  ~ ( l 0 ) I l O l  A2 j ) - :[A,Pl-jl 
min(A,,A2-j+k) 

+ [ A  , + A, - j + k - 2 i, p,  - j - k + i]. 
I = O  

( c )  Finally, application of the leftmost term in (3.16) leads to 

( T ( 1 1 ) [ 0 1 1 ) + 2 - k  : [ A ,  + A 2 - j +  k -24 p,  - j - k +  i ]  
I 

+ [ A ,  + A, - j+  k -2i, p1 + p2 - j - 2 k +  i]. 
1 

(4.9) 

(4.10) 

We now examine the allowed spans for i, j and k. 

(3.7b) with the additional restrictions given by equation (4.9) 
( a )  For fixed j and k, i will have its normal span 0 d i d A, - j + k given by equation 

j +  k - p1 s i s min(A2 - j+  k, A , )  

where the lower limit prevents p from assuming a negative value. Thus i is restricted 
to the range 

max(0, j +  k -  pl) d i d min(A,-j+ k, A I ) .  (4.11) 

(b) For fixed k , j  will have the normal span O S j S  A, given by equation (3.76) 
with the additional restriction j s pI from the mapping (4.8) and with the further 
restriction jd A I  + p,  - k coming from the fact that the term ( T(o-l)[oll)k would annihi- 
late the intermediate representation [ A , ,  p ,  - j] for j > A ,  + p,  - k. Thus j is restricted 
to the range 

O S j S  min(A2, p , ,  A l  + p ,  - k). (4.12) 

( c )  Finally, k will have the normal span O s  k s p 2  given by equation (3.7b) with 
would the only additional restriction k d A I  + p l ,  otherwise the term ( T ( O - ' ) [ O ' ]  ) 

annihilate the initial representation [AlpI]. Thus k is restricted to the range 

OS k d m i n ( p 2 ,  Al+pl).  (4.13) 

Once more we recall that, when restricted to the model space, the U(3) tensor .T?1"2)[*2+2] 

maps [Alpl] to a unique [A3p3] according to the shift rules (4.7) (i.e. there is no more 
summation on i in (4.9) and (4.10)); i assumes the specific value given by (4.7) (for 
fixed k and j ) .  

We thus have obtained the very interesting result that, when its action is restricted 
to the model space, each Bargmann tensor $,"1y2)1"2+21 corresponds to a unique term 
in the O'Reilly series. More important, if either i, j, or k lies out of the bounds allowed 
by the summation limits of the O'Reilly formula, the corresponding tensor has vanishing 
matrix elements. In other words, there are exactly I and no more [A2p2]  Bargmann 
tensors (3.17) with non-vanishing matrix elements between given [Alpl] and [A3p3]  
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representations. Thus we conclude that properties (i), (ii) and (iii) hold for the 
Bargmann tensors (3.17). 

A multiplicity set is defined by the set of all the combinations of the indices ( i j k )  
leading to the same final representation [ A 3 p 3 ]  in (6.3). We easily see that these are 
related by 

where kmin ,  j,,, and imin are the maximal or minimal values allowed by the limits in 
the O'Reilly series. Note that the index p orders the tensors belonging to a multiplicity 
set and that the Gramm-Schmidt process for the calculation of the Wigner coefficients 
which will be expounded in § 6 will respect this ordering. It will be shown in 9 8 that 
the ordering (4.14) is not arbitrary but rather has been chosen such that a subset of a 
restricted set of Wigner coefficients would conveniently vanish as discussed in Q 2. 

5. Matrix elements for the [A01 and [pol tensors 

It is clear from equation (2.14) that, from a knowledge of the reduced matrix elements 
of generic Bargmann tensors, one can easily deduce the corresponding Wigner 
coefficients. The reduced matrix elements are calculated most easily when either A 2  
or p2 = 0 because the coupling is then multiplicity free. Expressions for these reduced 
matrix elements were previously given by us and will be recalled here because they 
play a fundamental role in determining the reduced matrix elements for a generic 
Bargmann tensor which has been factored according to equation (3.17). 

Matrix elements of the tensor (3.18a) have been determined in Le Blanc and Rowe 
(1986). We found that, with their help, analytical expressions could be given for the 
SU( 3) isoscalar factors 

where (Hecht 1965) 

(5.lb) 

(We will agree to take a (+1) phase factor in the following when taking the square 
root of the right-hand side of ( 5 . 1 ~ ) ~ )  Other Wigner coefficients pertaining to this 
coupling can be obtained with the use of recursion formulae (Hecht 1965, Draayer 
and Akiyama 1973, but see also Fujiwara and Horiuchi 1983). 
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The %(2)0U(3)  reduced matrix elements of tensor ( 3 . 1 8 ~ )  were also calculated 
and found to be given by 

( A ,  + l)[f(2A, - A1 + A 3  -2p1+2p3)]![;(Al + A 2 -  A3+2p1 + p3+ 3)]! 
(p3 + l)Al!Az! h3!(A1+ p1+ 1)!(A3 + p3+ l)![f(A3 - A I  - A 2 +  p1 +2p3)]! 

(5.2) 

i.e. in the Bargmann space, the doubly reduced matrix element is proportional to the 
SU(3) isoscalar coefficient ( 5 . 1 ~ )  as mentioned in § 2. 

Wigner coefficients pertaining to the coupling by a [OpJ tensor are easily obtained 
by Hermiticity considerations (Hecht 1965, Draayer and Akiyama 1973). The doubly 
reduced matrix elements ([h3p3]11 T(Yi’2’[or21]I~[A1pl]) are then given by 

with 

Since matrix elements of the tensors (3.18) are given in closed form, a relatively 
simple expression is readily obtained for the matrix elements of the generic composite 
tensor (3.17) (cf equation (6.2)). 

6. Computation of the Wigner coefficients 

of the basic tensors (3.11) where we use Hecht’s notation for the SU(3) basis (Hecht 
1965) (see also equation (8.1)). These are easily derived for elAIMA1 and c3A3MA3 
highest weights using the factorisation (3.17) and the results are summarised in terms 
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of the 9% (2) 0 SU(2) doubly reduced matrix elements 

( y l ( p ) y 2 ( p ) )  [ A 2 w 2 1  ([A3CL31HWI T E 2 i 2  l [ A l P l I H W )  

E A 2 . h 2 E P 2 * P 2  

X ([A~O]EA,AA,; [ O C L ~ I E ~ ~ ~ ~ ~ I ( [ ~ ~ ~ ~ I E ~ ~ ~ )  
X ([A I p l ] H W ;  [ A20]  ~ ~ ~ A h ~ l l [  A p ] & A ) ( [  A p ]  11 ~ A 2 - 2 J ( p ) ’ J ( p ) i r A 2 0 1  l l [A lPI l )  

l l[API) 
(6.2) 

where k ( p )  and j ( p )  are given by (4.14) and J 2 ( p )  is given by (4 . lb ) .  The sum on the 
right-hand side is easily performed as all its components are known analytically (cf 
9 5 ,  Le Blanc and Rowe 1986, Fujiwara and Horiuchi 1983), thus strongly favouring 
the choice of factorisation (3.17) for the Bargmann tensors (3.11). 

( r z - k ( ~ ) , w 2 - 2 k ( ~ ) ) [ O w ~ l  
X ( [ A P I E A ;  [OCLZI&~,~,~II[~~~~IHW)([~~~U~III T 

Following equation (2.16), the equation for the Wigner coefficients becomes 

= O  f o r p = l  
is the contribution to the pth tensor of the p ’ s  p - 1 couplings. 

matrix element 
To solve this equation, we start by expanding the Y%(2)0SU(3)  doubly reduced 
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and introducing these ratios in the recursion formulae derived by Hecht (1965). Thus 
the doubly reduced matrix element (6.6) becomes proportional to 

x = ([AlPIlHw; ~ ~ 2 P z l ~ z ’ ~ z , , , l l ~ ~ 3 P 3 1 ~ ~ ~ p  (6.9) 

and equation (6.4) reduces to an explicit expression for x2. General Wigner coefficients 
can then be derived from (6.8) and the recursion formulae given by Hecht (1965) and 
Draayer and Akiyama (1973). 

To obtain SU(3) XI SO(3) Wigner coefficients, one would introduce on the left-hand 
side of (6.2) the now known values of the 9%(2)OSU(3)  reduced matrix elements. 
Then the right-hand side of (6.2) would be recast in a form appropriate to the 
SU( 3) J. SO(3) reduction by providing values for the multiplicity-free coefficients 

([AlPll(fjl)Ll; [~2OIL211[~3CL31(~3)L3) ( 6 . 1 0 ~ )  

and (using Hermiticity considerations (Vergados 1968)) 

( [A lPII(~1)Ll;  [OP2lL2II [A3cL31(63)L3) (6.10b) 

which can be obtained in a recursive fashion from matrix elements of the elementary 
tensors (3.18) in a canonical SU(3) 2 SO(3) basis: 

(gl[APl(fj)LM) (6.11) 

(Le Blanc and Rowe 1985a, b, 1986). We intend to address this problem more 
thoroughly in a future publication. 

7. An example 

We will illustrate the algorithm of 0 6 for the case of the coupling of an SU(3) unirrep 
[ A F ]  to itself by a [ l l ]  tensor. For A, /L 2 1,  this coupling has multiplicity Z=2. 
According to (3.7) and (4.14), the Bargmann tensors needed are TCo0)[ll1 and T(l- l”l’ l ,  
in this order. 
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We have from (6.2) and (6.8) that 

Defining 

([ACLIHW; r111001 l [~P lHW)1=  x 

we find with the help of (7.1) and the recursion formulae given by Hecht (1965) that 

Note the vanishing of the last coefficient as can be predicted from § 8. When ( 7 . 2 )  is 
introduced into (6.7), we find 

~ ( [ ~ p l ~ ~ O l [ ~ ~ l [ O ~ l ;  - 11--[111-1) 

2 2pA +2p2+8p +3A + 6  
= - ( 3 p ( p +  I ) )  [ ( A  + p + l ) ( A  

which, with the help of (6.4) and (6.6), leads to 

X *  = tL(A+CL+1)  
2(2pA + 2 p 2 + 8 p + 3 A + 6 ) ’  

(7.3) 

(7.4) 

It is natural to take a (+1) phase when taking the square root in (7.4). However, any 
other phase convention could equally well be adopted. One can easily verify that the 
normalisation (7.4) is correct. 

Using the first coupling thus defined, we then find from (6.7) 

from which we deduce 

([Ap]II T‘l-l)[l l l  !l[Ap]), = - [ f A ( A  + 2 ) ] 1 ’ 2 ~  
using (6.6). 

We obtain from (6.2) and (6.3) 

(7.6) 

(7.7a) 
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and, from (6.4), 

1 PA(P+2)  
2( A+2 ) ' I2 (  (2pA+2p2+8p+3A +6)  

( A  + p + 4)(2p + A + 2) 
2 ( A 2  = 1, p = 2) = -- 

Similarly 

P ( A 2  = 0, p = 2) = -- ( - A )"*(2A + 3 p  +4) 2 3(A+2) 
and 

A 3 (p  +2)(A + p  +2)(2p + A +2)  
2 ( A 2 = 0 , p = 2 ) = - -  - 2 ( 3(A+2) ) ' I 2 (  ( 2 4  + 2 p 2 + 8 p + 3 A  +6)  

(7.7b) 

(7.7c) 

(7.7d) 

Defining 

([ACLIHW; [11100lI~~PlHW)2 =Y 
we find with the help of (7.7) and the recursion formulae given by Hecht (1965): 

2(2pA + 2 p 2 +  8p + 3A + 6) 
A + p + 2  6A(P + 1)(F +2)  ) ' I2(  

One can already verify the orthogonality of the two coupling from (7.2) and (7.8). 
We obtain from (6.7) 

Y 
( F + 1 )  

= ( 6 A ( A + l ) ( p + 2 )  

from which we deduce 

"2(A + p  +3)(A + 2 p  $2) 
y. (7.10) 

( A  + P  +2) 
([Ap]11 T(l-')rlll 

When (7.10) and (7.7d) are introduced in (6.4), we finally obtain 

~ A ( K + ~ ) ( A  + / ~ + 2 ) ~  
Y2=2(A+2)(A+p+3)(2pA + 2 p 2 + 8 p + 3 A + 6 ) '  (7.11) 

Note that the above example is chosen specifically to illustrate a slightly undesirable 
feature of the above choice of couplings. For obvious practical reasons, one would 
prefer to define the first [ l l ]  coupling by means of a [ll] tensor whose components 
are the elements of the 4 3 )  algebra itself and the second coupling by means of a 
complementary [ 111 tensor operator (Hecht 1965). This choice would be equivalent 
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to making the replacement (3.15) in the generic structure ofthe basic Bargmann tensors. 
While this choice would be perfectly acceptable for the [ l l ]  tensors, it leads to 
unnecessary complications for higher rank tensors. For example, the factorisation 
(3.17) would not hold any more and, as a consequence, evaluation of the matrix 
elements (6.1) would be recursive as in Draayer and Akiyama (1973). Null spaces 
inclusion properties would also be similar to theirs (see also Le Blanc 1985) but would 
not be as practical as the ones uncovered in 0 8 as will be discussed there. We therefore 
favour the factorisation (3.17) with the understanding that the substitution (3.15) is 
more convenient for the specific case of [ l l ]  SU(3) operators. 

8. Null spaces inclusion properties; ordered set of tensors 

We are now left with the justification of the ordering (4.14) for the basic Bargmann 
tensors. We will give a partial proof in this section of a conjecture that the ordering 
leads to the resolution of the SU(3) outer multiplicity advocated by Hecht (1965) as 
discussed in 0 2. 

We first redefine the parametrisation (3.1) for the SU(3) basis and define, with 
respect to the highest weight state, the following quantum numbers (Hecht 1965) : 

E =2A + p - 3(p  + 4)  

where mI2 = p + p ,  m22 = q. The E quantum number denotes the eigenvalues of the 
SU(3) weight operator 

Qo = 2C33 - Cii - C22 (8.2) 
and is therefore an additive weight. A is equivalent to the usual angular momentum 
label J. 

Now, the set of allowed matrix elements (when reduced with respect to the 
% (2) 0 U( 2) subgroup) 

can be ordered by increasing values of 

with 

P l ( P ’ )  + q , ( P ’ )   AI + P I  + 2A2+ ~2-2A3 - ~ 3 )  

P1(P’)=PIm,,+(P!- 1) (8.3 b )  

ql(P’)=qlmax-(P’- l )  

thus by decreasing values of q l ( p ’ ) .  Similarly, we order the multiplicity set of tensors 
by increasing 

which is a decreasing function of j (  p )  (see equation (4.14)). 
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We now consider the entries of the matrix M defined by 

Because the tensor is of highest weight, the rightmost term in (3.17b) is ( T?;’-’’E1)’ 
which will map the ket ~ [ A l p l l ~ l A l )  to 

From (8.1), we deduce 

or 

But we must have q:  3 0. Thus we conclude that the matrix elements (8.4) vanish 
for q1 < j. In other words, Mpp,  has some null entries in its upper triangular part. We 
conjecture that all its upper triangular entries are null. 

We now restrict our attention to the special case of the coupling of a [Ap]  SU(3) 
representation to itself by a self-conjugate tensor [uu]. ‘This is less of a special case 
than it appears to be at  first glance, since, in a very real sense, knowledge of all 
self-conjugate operators in SU(3)  would be tantamount to knowledge of all SU(3)  
tensor operators’ (Louck et a1 1975). The maximal multiplicity for this coupling is 
1 = U + 1 .  Due to the A - p symmetry of the null spaces of such tensors, we may restrict 
consideration to the case p =S A without loss of generality. We easily verify the existence 
of the following cases for A, p and of the following spans for j, k = U -j, (allowed 
Bargmann tensors) and for q l ,  pI = U - q l ,  (allowed ket states) in equation (8.4). 

(i) For A + p < U, we have 1 = 0. 
(ii) For A<u, A + p = u + n ,  n S g ,  we have l = n + l  and 

u - A S j S p  U -  A S 91 s p. ( M a )  

(iii) For A 2 U, p 6 U, we have 1 = p + 1 and  

O s j s p  o s q , s + .  (8.86) 

(iv) For A 3 U, p 2 U, we have 1 = U +  1 and 

0 6 j s u  0 s  q1 S U. ( 8 . 8 ~ )  

From these results and equation (8.7), we deduce that, for the case of interest here, 
M is a strictly lower triangular square matrix: 

M -  (8.9) 
. . .  

The significance of such a result has already been fully discussed in § 2. 
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We conjecture that this result will also be verified for general couplings by non-self- 
conjugate tensors. For example, it is easily verified for the matrix elements 

Unfortunately, the proof of this conjecture is hindered by the complexity of the weight 
structure of SU(3) which makes the determination of the allowed ket states in equation 
(8.4) rather difficult. We intend to address this problem in a future work. 

In any event, it should be understood that the use of a Gramm-Schmidt process 
using the above ordering for the Bargmann tensors and the ket states in (8.4) will allow 
the Wigner coefficients ( 2 . 1 8 ~ )  to share property (8.9) of the matrix M,  i.e. the 
coefficients will be such that 

I t  should be noted that property (8.10) is most valuable for the following reason. In 
practical applications, one knows beforehand the Wigner coefficients and seeks to 
determine the values of the reduced matrix elements of a physical operator. Matrix 
elements similar to (8.4) are the most easily computed and due to the triangular 
structure of the coefficients (8.10), the determination of the reduced matrix elements 
would be straightforward, the system of linear equations to be solved being already 
in triangular form. 

We now have to examine if property (iv) of Biedenharn’s abstract basic tensors 
(§ 2) applies to the Bargmann tensors (3.17). To answer this point, we will look at the 
specific example of the coupling of a unirrep [Ap] to itself by the self-conjugate tensor 
[33], an example that we quote from Biedenharn et a1 (1985). This coupling can have 
a multiplicity 1 of up to four, i.e. O s  1 s 4. Denoting by So the set of all SU(3) unirreps 
such that 1 = 0 for [Ap] E So, SI the set of all SU(3) unirreps such that 1 = 1 for [Ap] E SI, 
etc, we have from (8.8) that 

The four possible tensors (3.17) are 

O s k s 3  (8.12) T~ ~ ( k - k X 3 3 1  

with j = 3 - k and i = k. The limits of the O’Reilly summations are 

O s  k s m i n ( 3 ,  A + p )  

O s j s m i n ( 3 ,  ,U, A + p  - k )  
max(0,3 - p )  s is min(2k, A )  

(8.13) 

from which we easily identify which tensor Tk has vanishing ( x )  or non-vanishing (0) 
matrix elements between representations belonging to S,. We have tabulated the result 
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for easy reference: 

(8.14) 

Now for a set of tensors T ;  to be canonical in the sense of Biedenharn et al, it should 
have the corresponding table: 

Th Ti Tk T i  
so [OOI x x x x  

[lo1 x x x x  
P O I  x x x x  
[Oil x x x x  
io21 x x x x  
[111 x x x x  

SI [211 o x x x  
[I21 o x x x  
[AO] h a 3  0 x x x 
[ O p ] p 3 3  0 x x x 

[ A l l  A 3 3  0 0 x x 
s2 [221 o o x x  

[ b l  2 3  o o x x  

[ 2 p l p S 3  0 0 0 x 
S3 [A21 h a 3  0 0 0 x 

(8.15) 

i.e. defining the null spaces N ,  =U,,, S, ,  these canonical tensors would be such that 

T ; :  [Ap] + 0 for [ A p ] ~ N , , m s k  (8.16) 

where the null spaces N, have the inclusion properties 

N~c...cN,cN,+,c...cN,. (8.17) 

It is obvious from this counterexample that the Bargmann tensors (4.13) do not share 
property (iv) of Biedenharn’s set of abstract tensors. 
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In view of the specific symmetry properties for the Wigner coefficients predicted 
by Biedenham and collaborators to follow if property (iv) were satisfied, one might 
suspect that the resolution presented herein is less than optimal. Besides the noted 
correspondence between the O’Reilly series and the structure of the Bargmann tensors, 
the fact that the algorithm of § 6 is rather straightforward and that it agrees with the 
very simple solution provided by Hecht (1965), another very strong argument in its 
favour is that it represents a major economy in the number of distinct tensors required 
for the resolution of the multiplicity problem. Recall that Biedenham’s analysis calls 
for a set of U(3) [ h 2 p 2 ]  tensors equal in number to the dimension of the SU(3) 
representation [ h 2 p Z ] .  With the identification of the operator patterns with the Q(2) 
tensorial properties of the Bargmann tensors, it is realised that our solution calls for 
a set of % ( 2 ) 0 U ( 3 )  tensors equal in number to the number of U(2) representations 
contained in the SU(3) representation, which is a much smaller number. 

We believe that the results of this paper give a satisfactory answer to the problem 
of uncovering the significance of an operator pattern, ‘the principal unsolved problem 
in the theory of tensor operators in the unitary groups’ (Biedenharn et a1 1972). 
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